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           S
oftware pervades every domain of sci-

ence ( 1– 3), perhaps nowhere more 

decisively than in modeling. In key 

scientifi c areas of great societal importance, 

models and the software that implement them 

defi ne both how science is done and what 

science is done ( 4,  5). Across all science, 

this dependence has led to concerns around 

the need for open access to software ( 6,  7), 

centered on the reproducibility of research 

( 1,  8– 10). From fi elds such as high-perfor-

mance computing, we learn key insights and 

best practices for how to develop, standard-

ize, and implement software ( 11). Open and 

systematic approaches to the development 

of software are essential for all sciences. But 

for many scientists this is not suffi cient. We 

describe problems with the adoption and use 

of scientifi c software.

One might assume that two principal 

scientifi c considerations drive the adoption 

of modeling software: the ability to enable 

the user to ask and answer new scientific 

questions ( 12) and the ability of others to 

reproduce the science ( 13). Alas, diffusion 

innovation theory defies such objectivity, 

indicating the importance of communication 

channels, time, and a social system, as well 

as the innovation itself ( 14). An individual’s 

adoption of an innovation relies on aware-

ness, opinion leaders, early adopters, and 

subjective perceptions. Scientifi c consider-

ations of the consequences of adoption gen-

erally occur late in the process, if at all.

This may be appropriate when deciding 

which smartphone application one uses. But 

we must hold scientific inquiry and adop-

tion of scientific software to higher stan-

dards. Does use of modeling software con-

form to basic tenets of scientifi c methods? 

We describe survey fi ndings suggesting that 

many scientists adopt and use software criti-

cal to their research for nonscientifi c reasons. 

These reasons are scientifically limiting. 

This result has potentially wider implications 

across all disciplines that are dependent upon 

a computational approach.

Surveying Species Distribution Modelers

We surveyed scientists across a single domain, 

species distribution modeling (SDM) ( 15) 

[see supplementary materials for details]. 

This strategic targeting separates our analy-

sis from previous efforts in important ways, 

allowing an analysis spanning computational 

skill sets, while addressing the interplay 

between models and computation. Our ~400 

respondents ranged from those who “fi nd it 

diffi cult to use software” to those “very expe-

rienced and very technical.” Asking people 

to fi rst identify with a scientifi c domain and 

addressing models and software through that 

lens extended the diversity of respondents 

and minimized self-selection bias that poten-

tially plagued previous efforts ( 16).

We studied modelers of complex interac-

tions between species and their environment 

because previous studies have typically cho-

sen atypical groups predefi ned by computa-

tional, and not scientifi c, expertise [e.g., high-

performance computing ( 11)], where the 

domain leads to self-selection by those com-

fortable with computational methods. We fl ip 

that approach and investigate the diversity 

of computational expertise within a domain 

defi ned by scientifi c, rather than computa-

tional, problems. Although there are limits 

to the extent that one can generalize from a 

domain-targeted study [but also the value of 

case studies ( 17)], SDM modelers likely rep-

resent a wider ecological, biological, and/

or environmental science community: (i) a 

range of software packages for modeling is 

available, (ii) scientists are principally edu-

cated as biologists and ecologists, and (iii) 

scientifi c challenges are broadly the same. 

Nonetheless, extending the line of inquiry, 

we present here more widely through further 

studies, is clearly desirable [such as in ( 18)].

Our results are intuitive but provide trou-

bling insight at the intersection of scientifi c 

pursuits and the adoption of computational 

methods. Nearly 30% reported that they used 

particular software because it had been “val-

idated against other methods in peer-review 

publications.” This rose to 57% for those who 

used “click-and-run” software with easy-

to-manipulate user interfaces and dropped 

to 11% for those who used “syntax-driven” 

platforms. Further, 7, 9, and 18% of scientists 

cited “the developer is well-respected,” “per-

sonal recommendation,” and “recommenda-

tion from a close colleague,” respectively, as 

reasons for using software. Only 8% claimed 

they had validated software against other 

methods as a primary reason for choice; 79% 

expressed a desire to learn additional soft-

ware and programming skills.

Many of these scientists rely on the fact 

that the software has appeared in a peer-

reviewed article, recommendations, and per-

sonal opinion, as their reason for adopting 

software. This is scientifi cally misplaced, as 

the software code used to conduct the science 

is not formally peer-reviewed ( 6). This is espe-

cially important when a disconnect occurs 

between equations and algorithms published 

in peer-reviewed literature and how those are 

actually implemented in software reportedly 

used in those papers ( 6,  19,  20).

Reliance on personal recommendations 

and trust is a strategy with risks to science 

and scientist. “End-user developers” com-

monly create scientifi c software ( 17,  21,  22), 

but they are often unaware of or ignore tradi-

tional software engineering standards, leav-

ing trust in their coding expertise potentially 

misplaced ( 1,  2,  9). A “well-respected” end-

user developer will almost certainly have 

earned that respect through scientifi c break-

throughs, perhaps not for their software engi-

neering skills (although agreement on what 

constitutes “appropriate” scientifi c software 

engineering standards is still under debate).

Most people, in some form, “trust” soft-

ware without knowing everything about how 

it works. More complex modeling software is 

a special case, particularly when the answer 

cannot be checked without the software, and 

there is thus no ability to validate its output. 

We have reason for approaching scientific 

software with healthy circumspection, rather 

than blind trust.

Given that scientists in general want to 

learn “enough” to do their science, our fi nd-

ing that an overwhelming majority of scien-

tists wanted increased computational skills 

suggests something more. Perceived insuf-
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fi cient understanding of what the software is 

doing suggests that users fret over whether it 

is indeed doing what is expected.

The most popular click-and-run software 

in our study was specifically designed for 

SDM, released in 2006 ( 23), and has been 

cited >1800 times. Confusion around the 

implementation of the software’s algorithms 

is common ( 24), even though the algorithms 

have been published in peer-reviewed litera-

ture ( 23). An explanation was published aim-

ing to describe the methods from a “view-

point likely to be more accessible (to ecolo-

gists) … than previous ones” ( 25). Clearly, 

there were many in the SDM domain unable 

to interpret the original algorithms, much less 

understand how they were implemented in 

the distributed code.

Recommendations, Moving Forward

Education: Universities should produce sci-

entists capable of instantiating science in 

code such that other scientists are able to 

peer-review code as they would other aspects 

of science. Formal training in statistics, com-

putational methods, mathematics, and soft-

ware engineering should be a core part of 

the science curriculum at undergraduate and 

research student levels.

The UK Research Council–funded Doc-

toral Training Centres (DTCs) were designed 

to provide such a contextualized curriculum. 

The Life Sciences Interface DTC at the Uni-

versity of Oxford takes students from both 

physical science (e.g., mathematics, computer 

science, and engineering) and life science 

(e.g., biologists, biochemists, and zoologists) 

backgrounds to produce multidisciplinary 

natural scientists. Graduates are fl uent in bio-

logical, mathematical, computer science, and 

statistical methods and are capable of convers-

ing and collaborating across these disciplines.

Scientifi c publication: Scientifi c software 

code needs to be not only published and made 

available ( 6,  7) but also peer-reviewed. That 

this is not part of the current peer-

review model means that papers of 

which science is primarily software-

based (i.e., most modeling papers) 

are not currently fully or properly 

peer-reviewed. It also means peer-

reviewers need to be able to peer-

review the code (i.e., be highly com-

putationally literate). Scientifi c soft-

ware code should meet a baseline 

standard of intelligibility in how it is 

written (and commented on) ( 1,  2,  9). 

This requirement is analogous to the 

widely used standard of English in 

peer-reviewed publications in order 

to ensure general accessibility of 

articles. A standard of transparency and intel-

ligibility of code that affords precise, formal 

replication of an experiment, model simula-

tion, or data analysis, as well as peer-review of 

scientifi c software, needs to be a condition of 

acceptance of any paper using such software.

There are journals providing examples of 

how this might be done. The journal IPOL: 

Image Processing on Line requires authors to 

submit source code for peer-review. Insight 

Journal has an emphasis on automated code 

compilation and testing. The Journal of Open 

Research Software peer-reviews code and 

publishes concise descriptions of the soft-

ware. Dealing with citable, peer-reviewed 

software in this way would relieve some of 

the burden on the peer-review process at more 

general journals.

Journals can also educate. The British 

Medical Journal, with many submissions 

deficient in statistical implementation, ini-

tiated a series of tutorial articles ( 26). These 

cover a wide range of statistical concepts 

clearly and concisely, giving detailed worked 

examples and explaining how to describe the 

results of such studies in a manner that makes 

it easy for the reader to validate for him- or 

herself the statistical calculations. Journals 

publishing research relying on computational 

science software might publish tutorial papers 

covering the mathematical and computa-

tional underpinnings of key software in their 

domains, authored by leading authorities.

Changing the status quo will not be easy. 

Despite the promise of these early efforts, it 

remains to be seen if they are effective, scal-

able, and, most important, will be adopted 

by the broader scientific community. Most 

scientists, despite an increasing number of 

programming skills and practices initiatives 

aimed at scientists (e.g., Software Carpentry, 

Software Sustainability Institute), continue to 

emerge from natural science research train-

ing without formal training in computational 

methods and software development and/or 

engineering. A 2010 survey showed that only 

3 of the 20 most highly cited journals required 

even the most basic step of making source 

code available upon publication ( 7). Current 

models for how scientists and journals are 

rewarded must change, as the would-be edi-

tors of the Open Research Computation jour-

nal (now a series of the journal Source Code 

for Biology and Medicine) discovered during 

efforts to establish a journal for publishing 

peer-reviewed software ( 27).

Societally important science relies on 

models and the software implementing them. 

The scientifi c community must ensure that 

the fi ndings and recommendations put forth 

based on those models conform to the highest 

scientifi c expectation. Learning from efforts 

such as those noted here, and acting upon their 

fi ndings, may help transform scientifi c peer-

review and training. 
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Selected quotes from survey respondents

“The research question and the data should be king, with an 
approach being selected on the basis that it is appropriate 
to both the research question and the data rather than the 
research question and the data being selected to fit the 
approach which a person knows how to use.”

 “I regularly see peer-reviewed articles that apply SDM 
incorrectly from either a statistical or inferential perspective. 
This is largely a user problem rather than a software 
problem as some people treat [SDM Software] as black 
boxes rather than inferential tools, and thus do not put in 
the intellectual effort required to do good work.”

 “We don't need fancier software, we need people who 
understand ecology and the importance of multiple types of 
data … The key is the ability to think in ecological terms.”
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