
17 MAY 2013 VOL 340 SCIENCE www.sciencemag.org 814

POLICYFORUM

 S
oftware pervades every domain of sci-

ence (1– 3), perhaps nowhere more

decisively than in modeling. In key

scientifi c areas of great societal importance,

models and the software that implement them

defi ne both how science is done and what

science is done (4, 5). Across all science,

this dependence has led to concerns around

the need for open access to software (6, 7),

centered on the reproducibility of research

(1, 8– 10). From fi elds such as high-perfor-

mance computing, we learn key insights and

best practices for how to develop, standard-

ize, and implement software (11). Open and

systematic approaches to the development

of software are essential for all sciences. But

for many scientists this is not suffi cient. We

describe problems with the adoption and use

of scientifi c software.

One might assume that two principal

scientifi c considerations drive the adoption

of modeling software: the ability to enable

the user to ask and answer new scientific

questions (12) and the ability of others to

reproduce the science (13). Alas, diffusion

innovation theory defies such objectivity,

indicating the importance of communication

channels, time, and a social system, as well

as the innovation itself (14). An individual’s

adoption of an innovation relies on aware-

ness, opinion leaders, early adopters, and

subjective perceptions. Scientifi c consider-

ations of the consequences of adoption gen-

erally occur late in the process, if at all.

This may be appropriate when deciding

which smartphone application one uses. But

we must hold scientific inquiry and adop-

tion of scientific software to higher stan-

dards. Does use of modeling software con-

form to basic tenets of scientifi c methods?

We describe survey fi ndings suggesting that

many scientists adopt and use software criti-

cal to their research for nonscientifi c reasons.

These reasons are scientifically limiting.

This result has potentially wider implications

across all disciplines that are dependent upon

a computational approach.

Surveying Species Distribution Modelers

We surveyed scientists across a single domain,

species distribution modeling (SDM) (15)

[see supplementary materials for details].

This strategic targeting separates our analy-

sis from previous efforts in important ways,

allowing an analysis spanning computational

skill sets, while addressing the interplay

between models and computation. Our ~400

respondents ranged from those who “fi nd it

diffi cult to use software” to those “very expe-

rienced and very technical.” Asking people

to fi rst identify with a scientifi c domain and

addressing models and software through that

lens extended the diversity of respondents

and minimized self-selection bias that poten-

tially plagued previous efforts (16).

We studied modelers of complex interac-

tions between species and their environment

because previous studies have typically cho-

sen atypical groups predefi ned by computa-

tional, and not scientifi c, expertise [e.g., high-

performance computing (11)], where the

domain leads to self-selection by those com-

fortable with computational methods. We fl ip

that approach and investigate the diversity

of computational expertise within a domain

defi ned by scientifi c, rather than computa-

tional, problems. Although there are limits

to the extent that one can generalize from a

domain-targeted study [but also the value of

case studies (17)], SDM modelers likely rep-

resent a wider ecological, biological, and/

or environmental science community: (i) a

range of software packages for modeling is

available, (ii) scientists are principally edu-

cated as biologists and ecologists, and (iii)

scientifi c challenges are broadly the same.

Nonetheless, extending the line of inquiry,

we present here more widely through further

studies, is clearly desirable [such as in (18)].

Our results are intuitive but provide trou-

bling insight at the intersection of scientifi c

pursuits and the adoption of computational

methods. Nearly 30% reported that they used

particular software because it had been “val-

idated against other methods in peer-review

publications.” This rose to 57% for those who

used “click-and-run” software with easy-

to-manipulate user interfaces and dropped

to 11% for those who used “syntax-driven”

platforms. Further, 7, 9, and 18% of scientists

cited “the developer is well-respected,” “per-

sonal recommendation,” and “recommenda-

tion from a close colleague,” respectively, as

reasons for using software. Only 8% claimed

they had validated software against other

methods as a primary reason for choice; 79%

expressed a desire to learn additional soft-

ware and programming skills.

Many of these scientists rely on the fact

that the software has appeared in a peer-

reviewed article, recommendations, and per-

sonal opinion, as their reason for adopting

software. This is scientifi cally misplaced, as

the software code used to conduct the science

is not formally peer-reviewed (6). This is espe-

cially important when a disconnect occurs

between equations and algorithms published

in peer-reviewed literature and how those are

actually implemented in software reportedly

used in those papers (6, 19, 20).

Reliance on personal recommendations

and trust is a strategy with risks to science

and scientist. “End-user developers” com-

monly create scientifi c software (17, 21, 22),

but they are often unaware of or ignore tradi-

tional software engineering standards, leav-

ing trust in their coding expertise potentially

misplaced (1, 2, 9). A “well-respected” end-

user developer will almost certainly have

earned that respect through scientifi c break-

throughs, perhaps not for their software engi-

neering skills (although agreement on what

constitutes “appropriate” scientifi c software

engineering standards is still under debate).

Most people, in some form, “trust” soft-

ware without knowing everything about how

it works. More complex modeling software is

a special case, particularly when the answer

cannot be checked without the software, and

there is thus no ability to validate its output.

We have reason for approaching scientific

software with healthy circumspection, rather

than blind trust.

Given that scientists in general want to

learn “enough” to do their science, our fi nd-

ing that an overwhelming majority of scien-

tists wanted increased computational skills

suggests something more. Perceived insuf-

Troubling Trends in Scientifi c
Software Use

COMPUTATIONAL SCIENCE

Lucas N. Joppa, 1 * Greg McInerny, 1 2 Richard Harper, 1 Lara Salido, 3 Kenji Takeda, 1
Kenton O’Hara, 1 David Gavaghan, 2 Stephen Emmott 1

“Blind trust” is dangerous when choosing
software to support research.

*Corresponding author. E-mail: lujoppa@microsoft.com

1Microsoft Research, Cambridge CB1 2FB, UK. 2Depart-
ment of Computer Science, University of Oxford, Oxford
OX1 3QD, UK. 3Centre for Ecology and Hydrology, Peni-
cuik, EH26 0QB, UK.

Published by AAAS

 o
n

Ju
ly

 2
2,

 2
01

3
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fr
om

http://www.sciencemag.org/

www.sciencemag.org SCIENCE VOL 340 17 MAY 2013 815

POLICYFORUM

fi cient understanding of what the software is

doing suggests that users fret over whether it

is indeed doing what is expected.

The most popular click-and-run software

in our study was specifically designed for

SDM, released in 2006 (23), and has been

cited >1800 times. Confusion around the

implementation of the software’s algorithms

is common (24), even though the algorithms

have been published in peer-reviewed litera-

ture (23). An explanation was published aim-

ing to describe the methods from a “view-

point likely to be more accessible (to ecolo-

gists) … than previous ones” (25). Clearly,

there were many in the SDM domain unable

to interpret the original algorithms, much less

understand how they were implemented in

the distributed code.

Recommendations, Moving Forward

Education: Universities should produce sci-

entists capable of instantiating science in

code such that other scientists are able to

peer-review code as they would other aspects

of science. Formal training in statistics, com-

putational methods, mathematics, and soft-

ware engineering should be a core part of

the science curriculum at undergraduate and

research student levels.

The UK Research Council–funded Doc-

toral Training Centres (DTCs) were designed

to provide such a contextualized curriculum.

The Life Sciences Interface DTC at the Uni-

versity of Oxford takes students from both

physical science (e.g., mathematics, computer

science, and engineering) and life science

(e.g., biologists, biochemists, and zoologists)

backgrounds to produce multidisciplinary

natural scientists. Graduates are fl uent in bio-

logical, mathematical, computer science, and

statistical methods and are capable of convers-

ing and collaborating across these disciplines.

Scientifi c publication: Scientifi c software

code needs to be not only published and made

available (6, 7) but also peer-reviewed. That

this is not part of the current peer-

review model means that papers of

which science is primarily software-

based (i.e., most modeling papers)

are not currently fully or properly

peer-reviewed. It also means peer-

reviewers need to be able to peer-

review the code (i.e., be highly com-

putationally literate). Scientifi c soft-

ware code should meet a baseline

standard of intelligibility in how it is

written (and commented on) (1, 2, 9).

This requirement is analogous to the

widely used standard of English in

peer-reviewed publications in order

to ensure general accessibility of

articles. A standard of transparency and intel-

ligibility of code that affords precise, formal

replication of an experiment, model simula-

tion, or data analysis, as well as peer-review of

scientifi c software, needs to be a condition of

acceptance of any paper using such software.

There are journals providing examples of

how this might be done. The journal IPOL:

Image Processing on Line requires authors to

submit source code for peer-review. Insight

Journal has an emphasis on automated code

compilation and testing. The Journal of Open

Research Software peer-reviews code and

publishes concise descriptions of the soft-

ware. Dealing with citable, peer-reviewed

software in this way would relieve some of

the burden on the peer-review process at more

general journals.

Journals can also educate. The British

Medical Journal, with many submissions

deficient in statistical implementation, ini-

tiated a series of tutorial articles (26). These

cover a wide range of statistical concepts

clearly and concisely, giving detailed worked

examples and explaining how to describe the

results of such studies in a manner that makes

it easy for the reader to validate for him- or

herself the statistical calculations. Journals

publishing research relying on computational

science software might publish tutorial papers

covering the mathematical and computa-

tional underpinnings of key software in their

domains, authored by leading authorities.

Changing the status quo will not be easy.

Despite the promise of these early efforts, it

remains to be seen if they are effective, scal-

able, and, most important, will be adopted

by the broader scientific community. Most

scientists, despite an increasing number of

programming skills and practices initiatives

aimed at scientists (e.g., Software Carpentry,

Software Sustainability Institute), continue to

emerge from natural science research train-

ing without formal training in computational

methods and software development and/or

engineering. A 2010 survey showed that only

3 of the 20 most highly cited journals required

even the most basic step of making source

code available upon publication (7). Current

models for how scientists and journals are

rewarded must change, as the would-be edi-

tors of the Open Research Computation jour-

nal (now a series of the journal Source Code

for Biology and Medicine) discovered during

efforts to establish a journal for publishing

peer-reviewed software (27).

Societally important science relies on

models and the software implementing them.

The scientifi c community must ensure that

the fi ndings and recommendations put forth

based on those models conform to the highest

scientifi c expectation. Learning from efforts

such as those noted here, and acting upon their

fi ndings, may help transform scientifi c peer-

review and training.

References and Notes
 1. S. M. Baxter et al., PLOS Comput. Biol. 2, e87 (2006).
 2. G. Wilson, Am. Sci. 97, 360 (2009).
 3. Advisory Committee for CyberInfrastructure, National Sci-

ence Foundation, Task Force on Software for Science and
Engineering Final Report (NSF, Arlington, VA, 2011).

 4. S. Emmott et al., Towards 2020 Science (Microsoft
Research, Cambridge, 2006).

 5. T. Hey et al., The Fourth Paradigm: Data-Intensive Scien-
tifi c Discovery (Microsoft Press, Redmond, WA, 2009).

 6. D. C. Ince et al., Nature 482, 485 (2012).
 7. A. Morin et al., Science 336, 159 (2012).
 8. L. Hatton, A. Roberts, IEEE Trans. Softw. Eng. 20, 785

(1994).
 9. D. A. Aruliah et al., arXiv.org, arXiv:1210.0530v1 (2012).
 10. C. Drummond, in ICML ’09: Proceedings of the Evaluation

Methods for Machine Learning Workshop (Association for
Computing Machinery, New York, 2009), article no. 7.

 11. B. R. Basili et al., IEEE Softw. 25, 29 (2008).
 12. G. Wilson, Am. Sci. 94, 5 (2006).
 13. G. Wilson, Comput. Sci. Eng. 10, 5 (2008).
 14. E. M. Rogers, Diffusion of Innovation (Free Press, New

York, ed. 5, 2003).
 15. J. Elith, J. R. Leathwick, Annu. Rev. Ecol. Evol. Syst. 40,

677 (2009).
 16. J. E. Hannay et al., in SECSE ‘09: Proceedings of the Sec-

ond International Workshop on Software Engineering for
Computational Science and Engineering (IEEE Computer
Society Washington, DC, 2009), pp. 1–8.

 17. J. Segal, C. Morris, J. Organ. End User Comput. 23, 51
(2011).

 18. R. Sanders, thesis, Queen’s University (2008); http://hdl.
handle.net/1974/1188.

 19. G. Miller, Science 314, 1856 (2006).
 20. Z. Merali, Nature 467, 775 (2010).
 21. J. Segal, VL-HCC ’07 IEEE Symposium on Visual Lan-

guages and Human-Centric Computing (IEEE Computer
Society, Washington, DC, 2007), pp. 111–118.

 22. D. F. Kelly, IEEE Softw. 24, 120 (2007).
 23. S. J. Phillips et al., Ecol. Modell. 190, 231 (2006).
 24. I. W. Renner, D. I. Warton, Biometrics 69, 274 (2013).
 25. J. Elith et al., Divers. Distrib. 17, 43 (2011).
 26. S. Mallett et al., BMJ 345, (jul02 1), e3999 (2012).
 27. C. Neylon et al., Source Code Biol. Med. 7, 2 (2012).

Acknowledgments: The authors thank scientists who partici-
pated in the survey on SDM and S. Pimm for comments.

Supplementary Materials
www.sciencemag.org/cgi/content/full/340/6134/814/DC1

10.1126/science.1231535

Selected quotes from survey respondents

“The research question and the data should be king, with an
approach being selected on the basis that it is appropriate
to both the research question and the data rather than the
research question and the data being selected to fit the
approach which a person knows how to use.”

 “I regularly see peer-reviewed articles that apply SDM
incorrectly from either a statistical or inferential perspective.
This is largely a user problem rather than a software
problem as some people treat [SDM Software] as black
boxes rather than inferential tools, and thus do not put in
the intellectual effort required to do good work.”

 “We don't need fancier software, we need people who
understand ecology and the importance of multiple types of
data … The key is the ability to think in ecological terms.”

Published by AAAS

 o
n

Ju
ly

 2
2,

 2
01

3
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fr
om

http://www.sciencemag.org/

