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Event related analysis: 

Coherence analysis: 

Introduction
>> The analysis of time-series data is central to many research methods in neuroscience, ranging in temporal and spatial scale 
from single-cell recordings to BOLD fMRI.  Nitime aims to provide a common programming interface for the representation of 
time-series data from different modalities and to provide algorithms and visualization tools for the analysis of these data. 

Neuroimaging 
In PYthon

Software design and features (see also: http://nipy.org/nitime/users/overview.html): 

>> Nitime is a part of the NIPY project (http://nipy.org), which is a development community of open-source tools for 
neuroimaging research (see posters #2990, #3429, #3841,#2927).  Nitime is written in Python using Scipy (http://scipy.org).

Examples (see also: http://nipy.org/nitime/examples/index.html): 

data = numpy.recfromcsv('data/event_related_fmri.csv')
# Initialize time-series,events objects:
T1 = nitime.TimeSeries(data.bold,sampling_interval=2)
T2 = nitime.TimeSeries(data.stimulus,sampling_interval=2)
# Initialize ‘analyzer’ object:
event_related = nitime.analysis.EventRelatedAnalyzer(T1,T2,15,offset=-5)
# Visualize result: 
nitime.viz.plot_tseries(event_related.eta,ylabel='BOLD (% signal change)',
                              yerror=event_related.ets)

# Load data: 
stimulus = numpy.loadtxt('data/grasshopper_stimulus1.txt')
# Initialize time-series object:
T = nitime.TimeSeries(data=stimulus,sampling_interval=50,time_unit='us')
# Load the spike-times from the data file: 
spike_times = numpy.loadtxt('data/grasshopper_spike_times1.txt')
# Initialize the Event object holding the spike-times: 
E = nitime.Events(spike_times,time_unit='us')
# Initialize the analysis object: 
event_related = nitime.analysis.EventRelatedAnalyzer(T,E,200,offset=-200)
# Visualize the results: 
nitime.viz.plot_tseries(event_related.eta,ylabel='Amplitude (dB SPL)',
                                  time_unit='ms')

# Load the data: 
data = [np.fromfile(f,dtype=np.uint16) for f in lfp_files]
# Initialize time-series
T = nitime.TimeSeries(data,time_unit='ms',sampling_interval=1)
# Initialize analysis:
C = nitime.analysis.CoherenceAnalyzer(T)
# Get frequencies: 
freqs = C.frequencies
# Low frequencies:
fig1=nitime.viz.drawmatrix_channels(np.mean(C.coherence[...,np.where(freqs<50)[0]],-1))
fig1.get_axes()[0].set_title('Low frequencies')
# High frequencies:
fig2=nitime.viz.drawmatrix_channels(np.mean(C.coherence[...,np.where(freqs>70)[0]],-1))
fig2.get_axes()[0].set_title('High frequencies')
  

BOLD fMRI in human visual system in response to different directions of motion: 

Intra-cellular recordings of spike-times in the grasshopper auditory system in response
to an auditory stimulus (data available on the CRCNS data-sharing site: http://crcns.org): 

>> Container objects for representation of time and for representation of time-series data: 
   ¤ TimeArray: Time-points with time-unit handling (time-unit display, conversion, etc).
   ¤ UniformTime: Uniformly sampled time-points, with the associated sampling rate/interval and time-unit; allows indexing with time information. 
   ¤ TimeSeries: Uniformly sampled time + data; indexing with time information. 
   ¤ Events: Time-points + data.
   ¤ Epochs: intervals in time (start-time, stop-time, offset).

>> General purpose algorithm library (not dependent on the design of the time-series objects): 
  Spectral decomposition, coherency, wavelet transforms,  FIR, etc.  
>> ‘Analyzer’ objects bridge between the time-series represenation and the algorithms, providing an easy-to-use interface
>> Lazy initialization: intense computations in the analyzer objects are done on a need-to-know basis. 
  Once a computation is done, the results are cached for reuse.
>> Visualization of time-series data and results of analysis (see examples below).   

Future developments:

>> Functional connectivity with Granger casuality (Kayser et al. 2009) 
>> Readers for common file-formats 

LFP data acquired with a polytrode in cat visual cortex (data available on CRCNS):

Coherence is a spectral analogue of correlation: 
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